9^2+23^2=c^2

Simple and best practice solution for 9^2+23^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9^2+23^2=c^2 equation:



9^2+23^2=c^2
We move all terms to the left:
9^2+23^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+610=0
a = -1; b = 0; c = +610;
Δ = b2-4ac
Δ = 02-4·(-1)·610
Δ = 2440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2440}=\sqrt{4*610}=\sqrt{4}*\sqrt{610}=2\sqrt{610}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{610}}{2*-1}=\frac{0-2\sqrt{610}}{-2} =-\frac{2\sqrt{610}}{-2} =-\frac{\sqrt{610}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{610}}{2*-1}=\frac{0+2\sqrt{610}}{-2} =\frac{2\sqrt{610}}{-2} =\frac{\sqrt{610}}{-1} $

See similar equations:

| (2x-20)(2x-26)=432 | | 1+4r=-5+7r | | 4(m+12)+4=20 | | -2(x-1)-5=12 | | 8k^2+26k+15=0 | | -2x+5=2x-1 | | 3(x+7)^2=4 | | x+5+(3x-5)=x | | 54=34-4(x-1) | | 15+3b=6b+3 | | 3w+w+18w-16w+13w=19 | | 7x+2(x+12)=6x | | g/8=g-1/10 | | -2y-14=-4y-16 | | -7y+2y+9y-3y-19=-15 | | 9=x/3+1/2 | | 4d-d=-(d-4) | | 16x−4x+1−21=0. | | 6-4(2x+1)=12 | | 12r-8r-4=20 | | ​4x−9=3x+5​4x−9=3x+5. | | 2(4k-3)=2(6+k) | | 7-5y=-17 | | b+2b+5b=16 | | 1/3(x-6)+2/9=-1 | | -18w+5w=-13 | | 3x-1-7=-33 | | 6u+u+5u-9u=6 | | 3(x-2)=2-4x | | 5000=1000+.20(x) | | 8c-3/4=7/8 | | 2n-20n+8n=20 |

Equations solver categories